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1. Introduction

The response of circular plates supported by a Winkler foundation has been studied widely by
assuming that the foundation reacts in compression as well as in tension. The assumption that the
contact between the plate and its support is established continuously simplifies the problem. It is
well known that in many practical cases, this assumption is questionable. When the foundation
reacts only in compression, then the problem becomes a non-linear one because the boundary
depends on the configuration of the loading [1]. However, there are various investigations dealing
with beams and plates resting on a foundation that reacts in compression only. Various authors
have studied circular plates on a tensionless foundation subjected to static loading mostly by
applying approximate solutions techniques to the non-linear governing equations of the problem
[2–6]. The governing equations of the unilateral contact problem can be also derived by using a
variational formulation [7,8]. This may have special advantage for obtaining boundary conditions
of the problem, when a two-parameter soil model is considered. However, the essential step in the
solution is the selection of the numerical methodology to deal with the governing equations
including the boundary conditions. Usually, the solution of the governing equations can be
accomplished by applying the finite element technique or Galerkin and Ritz methods. When
vibrations of the plate are investigated, the contact region of the plate becomes a function of time;
the problem appears to be a moving boundary value problem. The treatment of such problems
requires step-wise solutions by updating the contact regions, which changes the behaviour of the
problem continuously [9]. In the present study, a rigid circular plate supported by a tensionless
Winkler support along the edge of the plate is considered. The plate is assumed to be subjected to
a concentrated load applied off centre and a uniformly distributed load. Numerical results are
presented in figures to illustrate the behaviour of the plate under static and dynamic loadings and
to determine the effects of the system parameters.
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2. Statement of the problem

A circular rigid plate of radius a, of mass M subjected to a concentrated load P having an
eccentricity B and a uniformly distributed load Q is considered. The plate is assumed to be
supported along its edge by tensionless Winkler support of modulus Ke as shown in Fig. 1. Since
the loading and the configuration of the plate are symmetric with respect to one of the axes of the
plate, the displacement shape of the plate W ðR; y; tÞ will display the same symmetry.
Consequently, the equations of motion of the plate in vertical translation and rotation about a
horizontal axis can be expressed as

M
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@t2
W ðR ¼ 0; y; tÞ ¼ pa2Q þ P � 2Kea
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Hðy; tÞW ðR ¼ a; y; tÞ dy;
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Hðy; tÞW ðR ¼ a; y; tÞ cosy dy: ð1Þ

Since the support reacts in compression only, generally a lift-off is expected. Because the plate and
the loading as well as the supporting are symmetric with respect to one of the diameters of the
rigid plate, the contact and the lift-off of the plate will be established only along one part of the
edge support having the same symmetry as shown in Fig. 1. The tensionless character of the edge
support of the plate is taken into consideration in equations of motion (1) by introducing the
contact function Hðy; tÞ defined as

Hðy; tÞ ¼
1 for W ðR ¼ a; y; tÞ > 0;

0 for W ðR ¼ a; y; tÞp0:
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Fig. 1. Circular plate supported along its edge.
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The contact function ensures that the integrations in Eq. (1) are carried along the contact curve.
The translation and rotation of the rigid plate can be expressed to reflect the symmetry of the
motion as

W ðR; y; tÞ ¼ awðr; y; tÞ ¼ a½R0ðtÞ þ R1ðtÞr cosy�; ð3Þ

where r ¼ R=a and R0ðtÞ and R1ðtÞ represent the rigid translation and rotation of the plate. The
lift-off angle y0 is to be evaluated from

y0 ¼ arccos �
R0

R1

� �
; ð4Þ

provided that 0py0pp; where the cases y0 ¼ 0 ðR0=R1p� 1Þ and y0 ¼ p ðR0=R1X1Þ represent
the total lift-off and the total contact of the plate to the edge support, respectively. Substituting
the displacement function (3) into equations of motion (1), the following system of two
differential equations are obtained:

M .Rþ KR ¼ F; ð5Þ

where the dots denote the differentiation with respect to the non-dimensional time t and

RT ¼ ½R0ðtÞ; R1ðtÞ�; M ¼ ½mij�; K ¼ ½kijðtÞ�; F ¼ ½fiðtÞ�;

m11 ¼ 1; m12 ¼ m21 ¼ 0; m22 ¼ 0:25;

k11ðtÞ ¼ 2ke

R p
0 Hðy; tÞ dy; k12ðtÞ ¼ k21ðtÞ ¼ 2ke

R p
0 Hðy; tÞ cosy dy;

k22ðtÞ ¼ 2ke

R p
0 Hðy; tÞcos2y dy; f1ðtÞ ¼ qðtÞ; f2ðtÞ ¼ pðtÞb:

ð6Þ

The non-dimensional parameters introduced are defined as follows

t ¼ t

ffiffiffi
g

a

r
; p ¼

P

Mg
; q ¼

pa2Q

Mg
; b ¼

B

a
; ke ¼

Kea
2

Mg
: ð7Þ

Although the governing equation of problem (5) represents the small amplitude motion of the
rigid plate, it is highly non-linear due to the tensionless character of the edge support that leads a
time-dependent stiffness matrix K.

When a regular Winkler edge support is assumed, it can be shown easily that the system has two
free vibration periods

T0 ¼

ffiffiffiffiffiffi
2p
ke

s
; T1 ¼

ffiffiffiffiffi
p
ke

r
; ð8Þ

which correspond to the vertical and rotational vibrations of the rigid plate.
Furthermore, the case of the static equilibrium problem can be investigated by using the static

version of Eq. (4)

KR ¼ F; ð9Þ

which yields the static configuration of the rigid plate subjected to uniformly distributed load Q
and the vertical off-centre load P. Assuming that in the case of static equilibrium the contact takes
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place for 0pypy0; the elements of the matrix K can be evaluated as follows:

k11 ¼ 2key0; k12 ¼ k21 ¼ 2ke sin y0; k22 ¼ keðy0 þ 0:5 sin 2y0Þ:

When only one of the loading cases, Q or P, is considered, it can be deduced that the R0 and R1

depend linearly on the loading, where the lift-off angle y0 does not depend on the level of the
loading, as reported in various similar studies [1–3]. On the other hand, when two types of loading
are present, then the lift-off angle will depend on the ratio of the loads p=q:

3. Numerical solutions and discussion

The effects of the various parameters of the system are studied by obtaining various numerical
results. When partial contact takes place, the solution of the static case requires an iterative
solution. On the other hand, the dynamic behaviour of the system is obtained by employing a
numerical solution procedure for the governing differential equation (5) along the time axis and
by assuming initial conditions for the problem. At each time step the contact angle yo is updated
according the displacements of the plate at the previous time step and the elements of matrix K are
evaluated accordingly.

The static configuration of the plate is obtained assuming ke ¼ 1:0 and p ¼ 1:0 for
various values of the eccentricity b and that of the uniformly distributed load q. Figs. 2(a)–(c)
show the variations of the lift-off angle y0, the non-dimensional vertical displacement R0

and the rotation R1, respectively. As it is seen, the lift-off comes into being, when the eccentricity
of the vertical load increases and when the distributed load decreases. When no lift-off is
present, R0 and R1 are linear functions of the load q and the eccentricity b, respectively.
However, the dependency becomes non-linear, when lift-off appears and the vertical displace-
ment and rotation increase rapidly. Figs. 3(a)–(c) display similar variations for ke ¼ 1:0 and
q ¼ 0:4 for various values of the eccentricity b and the vertical load p. Inspection of the
figures reveals that full contact is established, when the eccentricity b and the load p decrease.
The linear dependency of R0 and R1 on p and b can be observed, when no lift-off takes place.
However, large and non-linear increases in R0 and R1 arise due to the lift-off the plate from the
support.

Although the present formulation does not have any restriction concerning the time variation
of the loads as well as the initial conditions of the system for numerical evaluation, it is assumed
that the system starts from rest and the loads are applied instantaneously. The dynamic behaviour
of the system is represented for p ¼ 1:0; b ¼ 0:5 and ke ¼ 1:0 in Fig. 4, where the time variation of
the lift-off angle y0ðtÞ; the displacement R0ðtÞ and the rotation R1ðt) are displayed for various
values of the load q. As Fig. 4(a) shows, the full and partial contact cases follow each other in
course of the oscillation for the present numerical combination of the parameters. As expected,
the variation displays a highly non-linear behaviour. When the full contact of the plate is
developed, the plate has two free vibration periods as given in Eq. (8) which are T0 ¼ 2:507 and
T1 ¼ 1:772 for the given value of ke. As Figs. 4(b) and (c) reveal, R0ðtÞ and R1ðtÞ exhibit
oscillations similar to harmonic variations having the corresponding approximate periods.
However, as lift-off appears the harmonic variation vanishes and non-linear motion takes
place, while the system softens and the oscillations lengthen. Fig. 5 displays y0ðtÞ; R0ðtÞ and R1ðtÞ
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Fig. 2. Variations of (a) y0 lift-off angle, (b) R0 vertical displacement and (c) R1 rotation depending on b eccentricity for

ke ¼ 1:0; p ¼ 1:0 and various values of q.
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Fig. 3. Variations of (a) y0 lift-off angle, (b) R0 vertical displacement and (c) R1 rotation depending on b eccentricity for

ke ¼ 1:0; q ¼ 0:4 and various values of p.
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for p ¼ 1:0; q ¼ 0:4 and ke ¼ 1:0 for various values of the eccentricity b. As it is seen, the
time variations of these parameters deviate from the harmonic variations as partial lift-off
takes place.
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Fig. 4. Time variations of (a) y0ðtÞ lift-off angle, (b) R0ðtÞ vertical displacement and (c) R1ðtÞ rotation for ke ¼ 1:0;
p ¼ 1:0; b ¼ 0:5 and various values of q.

Z. Celep, M. Gen-co &glu / Journal of Sound and Vibration 263 (2003) 945–953 951



0

30

60

90

120

150

180

0 1 2 3 4 5 6 7 8 9 10
τ

0 1 2 3 4 5 6 7 8 9 10
τ

0 1 2 3 4 5 6 7 8 9 10
τ

θ 0
 

b=0.0 b=0.2 b=0.4 b=0.6 b=0.8 b=1.0

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

R
o

b=0.0 b=0.2 b=0.4 b=0.6 b=0.8 b=1.0

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

R
1

b=0.0 b=0.2 b=0.4 b=0.6 b=0.8 b=1.0

(a)

(b)

(c)

Fig. 5. Time variations of (a) y0ðtÞ lift-off angle, (b) R0ðtÞ vertical displacement and (c) R1ðtÞ rotation for ke ¼ 1:0;
p ¼ 1:0; q ¼ 0:4 and various values of b.
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4. Conclusion

Forced vibrations of a rigid plate supported along its edge by unilateral elastic edge support
have been studied. The plate is assumed to be subjected to uniformly distributed load and an off-
centre vertical load: Although the displacements of the plate are assumed to be small, the problem
appears to be a non-linear one due to the tensionless character of the edge support. The static
problem is evaluated as a special case. Numerical results are obtained to determine the effects of
the system parameters on the dynamic behaviour of the plate. It is seen that lift-off has a
significant effect on the vibrations of the plate, the oscillations are lengthened and the amplitudes
become larger, because the unilateral support model is relatively less constrained.
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